The Case for Flexible Data Routing in Modern Data Management

Enterprises are juggling more data destinations than ever before, from SIEMs and observability tools to data lakes and AI pipelines. Within modern data pipeline management platforms, flexible data routing and data management strategies cut complexity, reduce costs, and ensure every stream delivers value, making routing a foundation for modern analytics and security architectures.

September 17, 2025
Flexible Data Routing Blog Cover

Most organizations no longer struggle to collect data. They struggle to deliver it where it creates value. As analytics, security, compliance, and AI teams multiply their toolsets, a tangled web of point-to-point pipelines and duplicate feeds has become the limiting factor. Industry studies report that data teams spend 20–40% of their time on data management pipeline maintenance, and rework. That maintenance tax slows innovation, increases costs, and undermines the reliability of analytics.

When routing is elevated into the pipeline layer with flexibility and control, this calculus changes. Instead of treating routing as plumbing, enterprises can deliver the right data, in the right shape, to the right destination, at the right cost. This blog explores why flexible data routing and data management matters now, common pitfalls of legacy approaches, and how to design architectures that scale with analytics and AI.

Why Traditional Data Routing Holds Enterprises Back

For years, enterprises relied on simple, point-to-point integrations: a connector from each source to each destination. That worked when data mostly flowed into a warehouse or SIEM. But in today’s multi-tool, multi-cloud environments, these approaches create more problems than they solve — fragility, inefficiency, unnecessary risk, and operational overhead.

Pipeline sprawl
Every new destination requires another connector, script, or rule. Over time, organizations maintain dozens of brittle pipelines with overlapping logic. Each change introduces complexity, and troubleshooting becomes slow and resource intensive. Scaling up only multiplies the problem.

Data duplication and inflated costs
Without centralized data routing, the same stream is often ingested separately by multiple platforms. For example, authentication logs might flow to a SIEM, an observability tool, and a data lake independently. This duplication inflates ingestion and storage costs, while complicating governance and version control.

Vendor lock-in
Some enterprises route all data into a single tool, like a SIEM or warehouse, and then export subsets elsewhere. This makes the tool a de facto “traffic controller,” even though it was never designed for that role. The result: higher switching costs, dependency risks, and reduced flexibility when strategies evolve.

Compliance blind spots
Different destinations demand different treatments of sensitive data. Without flexible data routing, fields like user IDs or IP addresses may be inconsistently masked or exposed. That inconsistency increases compliance risks and complicates audits.

Engineering overhead
Maintaining a patchwork of pipelines consumes valuable engineering time. Teams spend hours fixing schema drift, rewriting scripts, or duplicating work for each new destination. That effort diverts resources from critical operations and delays analytics delivery.

The outcome is a rigid, fragmented data routing architecture that inflates costs, weakens governance, and slows the value of data management. These challenges persist because most organizations still rely on ad-hoc connectors or tool-specific exports. Without centralized control, data routing remains fragmented, costly, and brittle.

Principles of Flexible Data Routing

For years, routing was treated as plumbing. Data moved from point A to point B, and as long as it arrived, the job was considered done. That mindset worked when there were only one or two destinations to feed. It does not hold up in today’s world of overlapping analytics platforms, compliance stores, SIEMs, and AI pipelines.

A modern data pipeline management platform introduces routing as a control layer. The question is no longer “can we move the data” but “how should this data be shaped, governed, and delivered across different consumers.” That shift requires a few guiding principles.

Collection should happen once, not dozens of times. Distribution should be deliberate, with each destination receiving data in the format and fidelity it needs. Governance should be embedded in the pipeline layer so that policies drive what is masked, retained, or enriched. Most importantly, routing must remain independent of any single tool. No SIEM, warehouse, or observability platform should define how all other systems receive their data.

These principles are less about mechanics than about posture.  A smart, flexible, data routing architecture ensures efficiency at scale, governance and contextualized data, and automation. Together they represent an architectural stance that data deserves to travel with intent, shaped and delivered according to value.

The Benefits of Flexible, Smart, and AI-Enabled Routing

When routing is embedded in centralized data pipelines rather than bolted on afterward, the advantages extend far beyond cost. Flexible data routing, when combined with smart policies and AI-enabled automation, resolves the bottlenecks that plague legacy architectures and enables teams to work faster, cleaner, and with more confidence.

Streamlined operations
A single collection stream can serve multiple destinations simultaneously. This removes duplicate pipelines, reduces source load, and simplifies monitoring. Data moves through one managed layer instead of a patchwork, giving teams more predictable and efficient operations.

Agility at scale
New destinations no longer mean hand-built connectors or point-to-point rewiring. Whether it is an additional SIEM, a lake house in another cloud, or a new analytics platform, routing logic adapts quickly without forcing costly rebuilds or disrupting existing flows.

Data consistency and reliability
A centralized pipeline layer applies normalization, enrichment, and transformation uniformly. That consistency ensures investigations, queries, and models all receive structured data they can trust, reducing errors and making cross-platform analytics.

Compliance assurance
Policy-driven routing within the pipeline allows sensitive fields to be masked, transformed, or redirected as required. Instead of piecemeal controls at the tool level, compliance is enforced upstream, reducing risk of exposure and simplifying audits.

AI and analytics readiness
Well-shaped, contextual telemetry can be routed into data lakes or ML pipelines without additional preprocessing. The pipeline layer becomes the bridge between raw telemetry and AI-ready datasets.

Together, these benefits elevate routing from a background function to a strategic enabler. Enterprises gain efficiency, governance, and the agility to evolve their architectures as data needs grow.

Real-World Strategies and Use Cases

Flexible routing proves its value most clearly in practice. The following scenarios show how enterprises apply it to solve everyday challenges that brittle pipelines cannot handle:

Security + analytics dual routing
Authentication and firewall logs can flow into a SIEM for detection while also landing in a data lake for correlation and model training. Flexible data routing makes dual delivery possible, and smart routing ensures each destination receives the right format and context.

Compliance-driven routing
Personally identifiable information can be masked before reaching a SIEM but preserved in full within a compliant archive. Smart routing enforces policies upstream, ensuring compliance without slowing operations.

Performance optimization
Observability platforms can receive lightweight summaries to monitor uptime, while full-fidelity logs are routed into analytics systems for deep investigation. Flexible routing splits the streams, while AI-enabled capabilities can help tune flows dynamically as needs change.

AI/ML pipelines
Machine learning workloads demand structured, contextual data. With AI-enabled routing, telemetry is normalized and enriched before delivery, making it immediately usable for model training and inference.

Hybrid and multi-cloud delivery
Enterprises often operate across multiple regions and providers. Flexible routing ensures a single ingest stream can be distributed across clouds, while smart routing applies governance rules consistently and AI-enabled features optimize routing for resilience and compliance.

Building for the future with Flexible Data Routing

The data ecosystem is expanding faster than most architectures can keep up with. In the next few years, enterprises will add more AI pipelines, adopt more multi-cloud deployments, and face stricter compliance demands. Each of these shifts multiplies the number of destinations that need data and the complexity of delivering it reliably.

Flexible data routing offers a way forward enabling multi-destination delivery. Instead of hardwired connections or duplicating ingestion, organizations can ingest once and distribute everywhere, applying the right policies for each destination. This is what makes it possible to feed SIEM, observability, compliance, and AI platforms simultaneously without brittle integrations or runaway costs.

This approach is more than efficiency. It future-proofs data architectures. As enterprises add new platforms, shift workloads across clouds, or scale AI initiatives, multi-destination routing absorbs the change without forcing rework. Enterprises that establish this capability today are not just solving immediate pain points; they are creating a foundation that can absorb tomorrow’s complexity with confidence.

From Plumbing to Strategic Differentiator

Enterprises can’t step into the future with brittle, point-to-point pipelines. As data environments expand across clouds, platforms, and use cases, routing becomes the factor that decides whether architectures scale with confidence or collapse under their own weight. A modern routing layer isn’t optional anymore; it’s what holds complex ecosystems together.

With DataBahn, flexible data routing is part of an intelligent data layer that unifies collection, parsing, enrichment, governance, and automation. Together, these capabilities cut noise, prevent duplication, and deliver contextual data for every destination. The outcome is data management that flows with intent: no duplication, no blind spots, no wasted spend, just pipelines that are faster, cleaner, and built to last.

Ready to unlock full potential of your data?
Share

See related articles

Financial data flows are some of the most complex in any industry. Trades, transactions, positions, valuations, and reference data all pass through ETL jobs, market feeds, and risk engines before surfacing in reports. Multiply that across desks, asset classes, and jurisdictions, and tracing a single figure back to its origin becomes nearly impossible. This is why data lineage has become essential in financial services, giving institutions the ability to show how data moved and transformed across systems. So, when regulators, auditors, or even your own board ask: “Where did this number come from?” too many teams still don’t have a clear answer.

The stakes couldn’t be higher. Across frameworks like BCBS-239, the Financial Data Transparency Act, and emerging supervisory guidelines in Europe, APAC, and the Middle East, regulators are raising the bar. Banks that have adopted modern data lineage tools report 57% faster audit prep and ~40% gains in engineering productivity, yet progress remains slow — surveys show that fewer than 10% of global banks are fully compliant with BCBS-239 principles. The result is delayed audits, costly manual investigations, and growing skepticism from regulators and stakeholders alike.

The takeaway is simple: data lineage is no longer optional. It has become the foundation for compliance, risk model validation, and trust. For financial services, what data lineage means is simple: without it, compliance is reactive and fragile; with it, auditability and transparency become operational strengths.

In the rest of this blog, we’ll explore why lineage is so hard to achieve in financial services, what “good” looks like, and how modern approaches are closing the gap.

Why data lineage is so hard to achieve in Financial Services

If lineage were just “draw arrows between systems,” we’d be done. In the real world it fails because of technical edge cases and organizational friction, the stuff that makes tracing a number feel like detective work.

Siloed ownership and messy handoffs
Trade, market, reference and risk systems are often owned by separate teams with different priorities. A single calculation can touch five teams and ten systems; tracing it requires stepping across those boundaries and reconciling different glossaries and operational practices. This isn’t just technical overhead but an ownership problem that breaks automated lineage capture.  

Opaque, undocumented transforms in the middle
Lineage commonly breaks inside ETL jobs, bespoke SQL, or one-off spreadsheets. Those transformation steps encode business logic that rarely gets cataloged, and regulators want to know what logic ran, who changed it, and when. That gap is one of the recurring blockers to proving traceability.  

Temporal and model lineage
Financial reporting and model validation require not just “where did this value come from?” but “what did it look like at time T?” Capturing temporal snapshots and ensuring you can reconstruct the exact input set for a historical run (with schema versions, parameter sets, and market snapshots) adds another layer of complexity most lineage tools don’t handle out of the box.  

Scaling lineage without runaway costs
Lineage at scale is expensive. Streaming trades, tick data and high-cardinality reference tables generate huge volumes of metadata if you try to capture full, row-level lineage. Teams need to balance fidelity, cost, and query ability, and that trade-off is a frequent operational headache.  

Organizational friction and change management
Technical fixes only work when governance, process and incentives change too. Lineage rollout touches risk, finance, engineering and compliance, aligning those stakeholders, enforcing cataloging discipline, and maintaining lineage over time is a people problem as much as a technology one.

The real challenge isn’t drawing arrows between systems but designing lineage that regulators can trust, engineers can maintain, and auditors can use in real time. That’s the standard the industry is now being measured against.

What good Data Lineage looks like in finance

Great lineage in financial services doesn’t look like a prettier diagram; it feels like control. The moment an auditor asks, “Where did this number come from?” the answer should take minutes, not weeks. That’s the benchmark.

It’s continuous, not reactive.
Lineage isn’t something you piece together after an audit request. It’s captured in real time as data flows — across trades, models, and reports — so the evidence is always ready.

It’s explainable to both engineers and auditors.
Engineers should see schema versions, transformations, and dependencies. Auditors should see clear traceability and business definitions. Good lineage bridges both worlds without translation exercises.

It scales with the business.
From millions of daily trades to real-time model recalculations, lineage must capture detail without exploding into unusable metadata. That means selective fidelity, efficient storage, and fast query ability built in.

It integrates governance, not adds it later.
Lineage should carry sensitivity tags, policy markers, and glossary links as data moves. Compliance is strongest when it’s embedded upstream, not enforced after the fact.

The point is simple: an effective data lineage makes defensibility the default. It doesn’t slow down data flows or burden teams with extra work. Instead, it builds confidence that every calculation, every report, and every disclosure can be traced and trusted.

Databahn in practice:  Data Lineage as part of the flow

Databahn captures lineage as data moves, not after it lands. Rather than relying on manual cataloging, the platform instruments ingestion, parsing, transformation and routing layers so every change — schema update, join, enrichment or filter — is recorded as part of normal pipeline execution. That means auditors, risk teams and engineers can reconstruct a metric, replay a run, or trace a root cause without digging through ad-hoc scripts or spreadsheets.

In production, that capture is combined with selective fidelity controls, snapshotting for time-travel, and business-friendly lineage views so traceability is both precise for engineers and usable for non-technical stakeholders.

Here are a few of the key features in Databahn’s arsenal and how they enable practical lineage:

  • Seamless lineage with Highway
    Every routing and transformation is tracked natively, giving a complete view from source to report without blind spots.
  • Real-time visibility and health monitoring
    Continuous observability across pipelines detects lineage breaks, schema drift, or anomalies as they happen — not months later.
  • Governance with history recall and replay
    Metadata tagging and audit trails preserve data history so any past report or model run can be reconstructed exactly as it appeared.
  • In-flight sensitive data handling
    PII and regulated fields can be masked, quarantined, or tagged in motion, with those transformations recorded as part of the audit trail.
  • Schema drift detection and normalization
    Automatic detection and normalization keep lineage consistent when upstream systems change, preventing gaps that undermine compliance.

The result is lineage that financial institutions can rely on, not just to pass regulatory checks, but to build lasting trust in their reporting and risk models. With Databahn, data lineage becomes a built-in capability, giving institutions confidence that every number can be traced, defended, and trusted.

The future of Data Lineage in finance

Lineage is moving from a compliance checkbox to a living capability. Regulators worldwide are raising expectations, from the Financial Data Transparency Act (FDTA) in the U.S., to ECB/EBA supervisory guidance in Europe, to data risk frameworks in APAC and the Middle East. Across markets, the signal is the same: traceability can’t be partial or reactive, it has to be continuous.

AI is at the center of this shift. Where teams once relied on static diagrams or manual cataloging, AI now powers:

  • Automated lineage capture – extracting flows directly from SQL, ETL code, and pipeline metadata.
  • Drift and anomaly detection – spotting schema changes or unusual transformations before they become audit findings.
  • Metadata enrichment – linking technical fields to business definitions, tagging sensitive data, and surfacing lineage in auditor-friendly terms.
  • Proactive remediation – recommending fixes, rerouting flows, or even self-healing pipelines when lineage breaks.

This is also where modern platforms like Databahn are heading. Rather than stop at automation, Databahn applies agentic AI that learns from pipelines, builds context, and acts, whether that’s updating lineage after a schema drift, tagging newly discovered sensitive fields, or ensuring audit trails stay complete.

Looking forward, financial institutions will also see exploration of immutable lineage records (using distributed ledger technologies) and standardized taxonomies to reduce cross-border compliance friction. But the trajectory is already clear: lineage is becoming real-time, AI-assisted, and regulator-ready by default, and platforms with agentic AI at their core are leading that evolution.

Conclusion: Lineage as the Foundation of Trust

Financial institutions can’t afford to treat lineage as a back-office detail. It’s become the foundation of compliance, the enabler of model validation, and the basis of trust in every reported number.

As regulators raise the bar and AI reshapes data management, the institutions that thrive will be the ones that make traceability a built-in capability, not an afterthought. That’s why modern platforms like DataBahn are designed with lineage at the core. By capturing data in motion, applying governance upstream, and leveraging agentic AI to keep pipelines audit-ready, they make defensibility the default.

If your institution is asking tougher questions about “where did this number come from?”, now is the time to strengthen your lineage strategy. Explore how Databahn can help make compliance, trust, and auditability a natural outcome of your data pipelines. Get in touch for a demo!

Every October, Cybersecurity Awareness Month rolls around with the same checklist: patch your systems, rotate your passwords, remind employees not to click sketchy links. Important, yes – but let’s be real: those are table stakes. The real risks security teams wrestle with every day aren’t in a training poster. They’re buried in sprawling data pipelines, brittle integrations, and the blind spots attackers know how to exploit.

The uncomfortable reality is this: all the awareness in the world won’t save you if your cybersecurity data pipelines are broken.

Cybersecurity doesn’t fail because attackers are too brilliant. It fails because organizations can’t move their data safely, can’t access it when needed, and can’t escape vendor lock-in while dealing with data overload. For too long, we’ve built an industry obsessed with collecting more data instead of ensuring that data can flow freely and securely through pipelines we actually control.

It’s time to embrace what many CISOs, SOC leaders, and engineers quietly admit: your security posture is only as strong as your ability to move and control your data.

The Hidden Weakness: Cybersecurity Data Pipelines

Every security team depends on pipelines, the unseen channels that collect, normalize, and route security data across tools and teams. Logs, telemetry, events, and alerts move through complex pipelines connecting endpoints, networks, SIEMs, and analytics platforms.

And yet, pipelines are treated like plumbing. Invisible until they burst. Without resilient pipelines, visibility collapses, detections fail, and incident response slows to a crawl.

Security teams drowning in data yet starved for the right insights because their pipelines were never designed for flexibility or scale. Awareness campaigns should shine a light on this blind spot. Teams must not only know how phishing works but also how their cybersecurity data pipelines work — where they’re brittle, where data is locked up, and how quickly things can unravel when data can’t move.

Data Without Movement Is Useless

Here’s a hard truth: security data at rest is as dangerous as uncollected evidence.

Storing terabytes of logs in a single system doesn’t make you safer. What matters is whether you can move security data safely when incidents strike.

  • Can your SOC pivot logs into a different analytics platform when a breach unfolds?
  • Can compliance teams access historical data without waiting weeks for exports?
  • Can threat hunters correlate data across environments without being blocked by proprietary formats?

When data can’t move, it becomes a liability. Organizations have failed audits because they couldn’t produce accessible records. Breaches have escalated because critical logs were locked in a vendor’s silo. SOCs have burned out on alert fatigue because pipelines dumped raw, unfiltered data into their SIEM.

Movement is power. Databahn products are designed around the principle that data only has value if it’s accessible, portable, and secure in motion.

Moving Data Safely: The Real Security Priority

Everyone talks about securing endpoints, networks, and identities. But what about the routes your data travels on its way to analysts and detection systems?

The ability to move security data safely isn’t optional. It’s foundational. And “safe” doesn’t just mean encryption at rest. It means:

  • Encryption in motion to protect against interception
  • Role-based access control so only the right people and tools can touch sensitive data
  • Audit trails that prove how and where data flowed
  • Zero-trust principles applied to the pipeline itself

Think of it this way: you wouldn’t spend millions on vaults for your bank and then leave your armored trucks unguarded. Yet many organizations do exactly that, lock down storage, while neglecting the pipelines.

This is why Databahn emphasizes pipeline resilience. With solutions like Cruz, we’ve seen organizations regain control by treating data movement as a first-class security priority, not an afterthought.

A New Narrative: Control Your Data, Control Your Security

At the heart of modern cybersecurity is a simple truth: you control your narrative when you control your data.

Control means more than storage. It means knowing where your data lives, how it flows, and whether you can pivot it when threats emerge. It means refusing to accept vendor black boxes that limit visibility. It means architecting pipelines that give you freedom, not dependency.

This philosophy drives our work at Databahn.  With Reef helping teams shape, access, and govern security data, and Cruz enabling flexible, resilient pipelines. Together, these approaches echo a broader industry need: break free from lock-in, reclaim control, and treat your pipeline as a strategic asset.

Security teams that control their pipelines control their destiny. Those that don’t remain one vendor outage or one pipeline failure away from disaster.

The Path Forward: Building Resilient Cybersecurity Data Pipelines

So how do we shift from fragile to resilient? It starts with mindset. Security leaders must see data pipelines not as IT plumbing but as strategic assets. That shift opens the door to several priorities:

  • Embrace open architectures – Avoid tying your fate to a single vendor. Design pipelines that can route data into multiple destinations.
  • Prioritize safe, audited movement – Treat data in motion with the same rigor you treat stored data. Every hop should be visible, secured, and controlled.
  • Test pipeline resilience – Run drills that simulate outages, tool changes, and rerouting. If your pipeline can’t adapt in hours, you’re vulnerable.
  • Balance cost with control – Sometimes the cheapest storage or analytics option comes with the highest long-term lock-in risk. Awareness must extend to financial and operational trade-offs.

We’ve seen organizations unlock resilience when they stop thinking of pipelines as background infrastructure and start thinking of them as the foundation of cybersecurity itself. This shift isn’t just about tools, it’s about mindset, architecture, and freedom.

The Real Awareness Shift We Need

As Cybersecurity Awareness Month 2025 unfolds, we’ll see the usual campaigns: don’t click suspicious links, don’t ignore updates, don’t recycle passwords. All valuable advice. But we must demand more from ourselves and from our industry.

The real awareness shift we need is this: don’t lose control of your data pipelines.

Because at the end of the day, security isn’t about awareness alone. It’s about the freedom to move, shape, and use your data whenever and wherever you need it.

Until organizations embrace that truth, attackers will always be one step ahead. But when we secure our pipelines, when we refuse lock-in, and when we prioritize safe movement of data, we turn awareness into resilience.

And that is the future cybersecurity needs.

Ask any security practitioner what keeps them up at night, and it rarely comes down to a specific tool. It's usually the data itself – is it complete, trustworthy, and reaching the right place at the right time?

Pipelines are the arteries of modern security operations. They carry logs, metrics, traces, and events from every layer of the enterprise. Yet in too many organizations, those arteries are clogged, fragmented, or worse, controlled by someone else.

That was the central theme of our webinar, From Chaos to Clarity, where Allie Mellen, Principal Analyst at Forrester, and Mark Ruiz, Sr. Director of Cyber Risk and Defense at BD, joined our CPO Aditya Sundararam and our CISO Preston Wood.

Together, their perspectives cut through the noise: analysts see a market increasingly pulling practitioners into vendor-controlled ecosystems, while practitioners on the ground are fighting to regain independence and resilience.

The Analyst's Lens: Why Neutral, Open Pipelines Matter

Allie Mellen spends her days tracking how enterprises buy, deploy, and run security technologies. Her warning to practitioners is direct: control of the pipeline is slipping away.

The last five years have seen unprecedented consolidation of security tooling. SIEM vendors offer their own ingestion pipelines. Cloud hyperscalers push their monitoring and telemetry services as defaults. Endpoint and network vendors bolt on log shippers designed to funnel telemetry back into their ecosystems.

It all looks convenient at first. Why not let your SIEM vendor handle ingestion, parsing, and routing? Why not let your EDR vendor auto-forward logs into its own analytics console?

Allie's answer: because convenience is control and you're not the one holding it.

" Practitioners are looking for a tool much like with their SIEM tool where they want something that is independent or that’s kind of how they prioritize this "

— Allie Mellen, Principal Analyst, Forrester

This erosion of control has real consequences:

  • Vendor lock-in: Once you're locked into a vendor's pipeline, swapping tools downstream becomes nearly impossible. Want to try a new analytics platform? Your data is tied up in proprietary formats and routing rules.
  • Blind spots: Vendor-native pipelines often favor data that benefits the vendor's use cases, not the practitioners’. This creates gaps that adversaries can exploit.
  • AI limitations: Every vendor now advertises "AI-driven security." But as Allie points out, AI is only as good as the data it ingests. If your pipeline is biased toward one vendor's ecosystem, you'll get AI outcomes that reflect their blind spots, not your real risk.

For Allie, the lesson is simple: net-neutral pipelines are the only way forward. Practitioners must own routing, filtering, enrichment, and forwarding decisions. They must have the ability to send data anywhere, not just where one vendor prefers.

That independence is what preserves agility, the ability to test new tools, feed new AI models, and respond to business shifts without ripping out infrastructure.

The Practitioner's Challenge: BD's Story of Data Chaos

Theory is one thing, but what happens when practitioners actually lose control of their pipelines? For Becton Dickinson (BD), a global leader in medical technology, the consequences were very real.

BD's environment spanned hospitals, labs, cloud workloads, and thousands of endpoints. Each vendor wanted to handle telemetry in its own way. SIEM agents captured one slice, endpoint tools shipped another, and cloud-native services collected the rest.

The result was unsustainable:

  • Duplication: Multiple vendors forwarding the same data streams, inflating both storage and licensing costs.
  • Blind spots: Medical device telemetry and custom application logs didn't fit neatly into vendor-native pipelines, leaving dangerous gaps.
  • Operational friction: Pipeline management was spread across several vendor consoles, each with its own quirks and limitations.

For BD's security team, this wasn't just frustrating, it was a barrier to resilience. Analysts wasted hours chasing duplicates while important alerts slipped through unseen. Costs skyrocketed, and experimentation with new analytics tools or AI models became impossible.

Mark Ruiz, Sr. Director of Cyber Risk and Defense at BD, knew something had to change.

With Databahn, BD rebuilt its pipeline on neutral ground:

  • Universal ingestion: Any source from medical device logs to SaaS APIs could be onboarded.
  • Scalable filtering and enrichment: Data was cleaned and streamlined before hitting downstream systems, reducing noise and cost.
  • Flexible routing: The same telemetry could be sent simultaneously to Splunk, a data lake, and an AI model without duplication.
  • Practitioner ownership: BD controlled the pipeline itself, free from vendor-imposed limits.

The benefits were immediate. SIEM ingestion costs dropped sharply, blind spots were closed, and the team finally had room to innovate without re-architecting infrastructure every time.

" We were able within about eight, maybe ten weeks consolidate all of those instances into one Sentinel instance in this case, and it allowed us to just unify kind of our visibility across our organization."

— Mark Ruiz, Sr. Director, Cyber Risk and Defense, BD

Where Analysts and Practitioners Agree

What's striking about Allie's analyst perspective and Mark's practitioner experience is how closely they align.

Both argue that convenience isn't resilience. Vendor-native pipelines may be easy up front, but they lock teams into rigid, high-cost, and blind-spot-heavy futures.

Both stress that pipeline independence is fundamental. Whether you're defending against advanced threats, piloting AI-driven detection, or consolidating tools, success depends on owning your telemetry flow.

And both highlight that resilience doesn't live in downstream tools. A world-class SIEM or an advanced AI model can only be as good as the data pipeline feeding it.

This alignment between market analysis and hands-on reality underscores a critical shift: pipelines aren't plumbing anymore. They're infrastructure.

The Databahn Perspective

For Databahn, this principle of independence isn't an afterthought—it's the foundation of the approach.

Preston Wood, CSO at Databahn, frames it this way:

"We don't see pipelines as just tools. We see them as infrastructure. The same way your network fabric is neutral, your data pipeline should be neutral. That's what gives practitioners control of their narrative."

— Preston Wood, CSO, Databahn

This neutrality is what allows pipelines to stay future-proof. As AI becomes embedded in security operations, pipelines must be capable of enriching, labeling, and distributing telemetry in ways that maximize model performance. That means staying independent of vendor constraints.

Aditya Sundararam, CPO at Databahn, emphasizes this future orientation: building pipelines today that are AI-ready by design, so practitioners can plug in new models, test new approaches, and adapt without disruption.

Own the Pipeline, Own the Outcome

For security practitioners, the lesson couldn't be clearer: the pipeline is no longer just background infrastructure. It's the control point for your entire security program.

Analysts like Allie warn that vendor lock-in erodes practitioner control. Practitioners like Mark show how independence restores visibility, reduces costs, and builds resilience. And Databahn's vision underscores that independence isn't just tactical, it's strategic.

So the question for every practitioner is this: who controls your pipeline today?

If the answer is your vendor, you've already lost ground. If the answer is you, then you have the agility to adapt, the visibility to defend, and the resilience to thrive.

In security, tools will come and go. But the pipeline is forever. Own it, or be owned by it.

Hi 👋 Let’s schedule your demo

Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.

Trusted by leading brands and partners

optiv
mobia
la esfera
inspira
evanssion
KPMG
Guidepoint Security
EY
ESI