Scaling Security Operations using Data Orchestration

Learn how decoupling data ingestion and collection from your SIEM can unlock exceptional scalability and value for your security and IT teams

February 28, 2024

Scaling Security Operations using Data Orchestration

Lately, there has been a surge in discussions through numerous articles and blogs emphasizing the importance of disentangling the processes of data collection and ingestion from the conventional SIEM (Security Information and Event Management) systems. Leading detection engineering teams within the industry are already adapting to this transformation. They are moving away from the conventional approach of considering security data ingestion, analytics (detection), and storage as a single, monolithic task.

Instead, they have opted to separate the facets of data collection and ingestion from the SIEM, granting them the freedom to expand their detection and threat-hunting capabilities within the platforms of their choice. This approach not only enhances flexibility to bring the best-of-breed technologies but also proves to be cost-effective, as it empowers them to bring in the most pertinent data for their security operations.

Staying ahead of threats requires innovative solutions. One such advancement is the emergence of next-generation data-focused orchestration platforms.

So, what is Security Data Orchestration?

Security data orchestration is a process or technology that involves the collection, normalization, and organization of data related to cybersecurity and information security. It aims to streamline the handling of security data from various sources, making it more accessible in destinations where the data is actionable for security professionals.

 

Why is Security Data Orchestration becoming a big deal now?

Not too long ago, security teams adhered to a philosophy of sending every bit of data everywhere. During that era, the allure of extensive on-premise infrastructure was irresistible, and organizations justified the sustained costs over time. However, in the subsequent years, a paradigm shift occurred as the entire industry began to shift its gaze towards the cloud.

This transformative shift meant that all the entities downstream from data sources—such as SIEM (Security Information and Event Management) systems, UEBA (User and Entity Behavior Analytics), and Data Warehouses—all made their migration to the cloud. This marked the inception of a new era defined by subscription and licensing models that held data as a paramount factor in their quest to maximize profit margins.

In the contemporary landscape, most downstream products, without exception, revolve around the notion of data as a pivotal element. It's all about the data you ingest, the data you process, the data you store, and, not to be overlooked, the data you search in your quest for security and insights.

This paradigm shift has left many security teams grappling to extract the full value they deserve from these downstream systems. They frequently find themselves constrained by the limitations of their SIEMs, struggling to accommodate additional valuable data. Moreover, they often face challenges related to storage capacity and data retention, hindering their ability to run complex hunting scenarios or retrospectively delve deeper into their data for enhanced visibility and insights.

It's quite amusing, but also concerning, to note the significant volume of redundant data that accumulates when companies simply opt for vendor default audit configurations. Take a moment to examine your data for outbound traffic to Office 365 applications, corporate intranets, or routine process executions like Teams.exe or Zoom.exe.


Sample data redundancy illustration with logs collected by these product types in your SIEM Upon inspection, you'll likely discover that within your SIEM, at least three distinct sources are capturing identical information within their respective logs. This level of data redundancy often flies under the radar, and it's a noteworthy issue that warrants attention. And quite simply, this hinders the value that your teams expect to see from the investments made in your SIEM and data warehouse.

Conversely, many security teams amass extensive datasets, but only a fraction of this data finds utility in the realms of threat detection, hunting, and investigations. Here's a snapshot of Active Directory (AD) events, categorized by their event IDs and the daily volume within SIEMs across four distinct organizations.

It is evident that, despite AD audit logs being a staple in SIEM implementations, no two organizations exhibit identical log profiles or event volume trends.

 

Adhering solely to vendor default audit configurations often leads to several noteworthy issues:

  1. Overwhelming Log Collection: In certain cases, such as Org 3, organizations end up amassing an astronomical number of logs from event IDs like EID 4658 or 4690, despite their detection teams rarely leveraging these logs for meaningful analysis.
  2. Redundant Event Collection: Org 4, for example, inadvertently collects redundant events, such as EID 5156, which are also gathered by their firewalls and endpoint systems. This redundancy complicates data management and adds little value.
  3. Blind spots: Standard vendor configurations may result in the omission of critical events, thereby creating security blind spots. These unmonitored areas leave organizations vulnerable to potential threats

On the other hand, it's vital to recognize that in today's multifaceted landscape, no single platform can serve as the definitive, all-encompassing detection system. Although there are numerous purpose-built detection systems painstakingly crafted for specific log types, customers often find themselves grappling with the harsh reality that they can't readily incorporate a multitude of best-of-breed platforms.

The formidable challenges emerge from the intricate intricacies of data acquisition, system management, and the prevalent issue of the ingestion layer being tightly coupled with their SIEMs. Frequently, data cascades into various systems from the SIEM, further compounding the complexity of the situation. The overwhelming burden, both in terms of cost and operational intricacies, can make the pursuit of best-of-breed solutions an impractical endeavor for many organizations.

Today’s SOC teams do not have the strength or capacity to look at each source that is logging to weed out these redundancies or address blind spots or take only the right and relevant data to expensive downstream systems like the SIEM or analytics platforms or even manage multiple data pipelines for multiple platforms.

This underscores the growing necessity for Security Data Orchestration, with an even more vital emphasis on Context-Aware Security Data Orchestration. The rationale is clear: we want the Security Engineering team to focus on security, not get bogged down in data operations.

So, how do you go about Security Data Orchestration?

In its simplest form, envision this layer as a sandwich, positioned neatly between your data sources and their respective destinations.

 

The foundational principles of a Security Data Orchestration platform are -

Centralize your log collection:-  Gather all your security-related logs and data from various sources through a centralized collection layer. This consolidation simplifies data management and analysis, making it easier for downstream platforms to consume the data effectively.

Decouple data ingestion:- Separate the processes of data collection and data ingestion from the downstream systems like SIEMs. This decoupling provides flexibility and scalability, allowing you to fine-tune data ingestion without disrupting your entire security infrastructure.

Filter to send only what is relevant to your downstream system:- Implement intelligent data orchestration to filter and direct only the most pertinent and actionable data to your downstream systems. This not only streamlines cost management but also optimizes the performance of your downstream systems with remarkable efficiency.

Enter DataBahn

At databahn.ai, our mission is clear: to forge the path toward the next-generation Data Orchestration platform. We're dedicated to empowering our customers to seize control of their data but without the burden of relying on communities or embarking on the arduous journey of constructing complex Kafka clusters and writing intricate code to track data changes.

We are purpose-built for Security, our platform captures telemetry once, improves its quality and usability, and then distributes it to multiple destinations - streamlining cybersecurity operations and data analytics.

DataBahn seamlessly ingests data from multiple feeds, aggregates compresses, reduces, and intelligently routes it. With advanced capabilities, it standardizes, enriches, correlates, and normalizes the data before transferring a comprehensive time-series dataset to your data lake, SIEM, UEBA, AI/ML, or any downstream platform.


DataBahn offers continuous ML and AI-powered insights and recommendations on the data collected to unlock maximum visibility and ROI. Our platform natively comes with

  • Out-of-the-box connectors and integrations:- DataBahn offers effortless integration and plug-and-play connectivity with a wide array of products and devices, allowing SOCs to swiftly adapt to new data sources.
  • Threat Research Enabled Filtering Rules:- Pre-configured filtering rules, underpinned by comprehensive threat research, guarantee a minimum volume reduction of 35%, enhancing data relevance for analysis.
  • Enrichment support against Multiple Contexts:- DataBahn enriches data against various contexts including Threat Intelligence, User, Asset, and Geo-location, providing a contextualized view of the data for precise threat identification.
  • Format Conversion and Schema Monitoring:- The platform supports seamless conversion into popular data formats like CIM, OCSF, CEF, and others, facilitating faster downstream onboarding. It intelligently monitors log schema changes for proactive adaptability.
  • Schema Drift Detection:- Detect changes to log schema intelligently for proactive adaptability.
  • Sensitive data detection:- Identify, isolate, and mask sensitive data ensuring data security and compliance.
  • Continuous Support for New Event Types:- DataBahn provides continuous support for new and unparsed event types, ensuring consistent data processing and adaptability to evolving data sources.

Data orchestration revolutionizes the traditional cybersecurity data architecture by efficiently collecting, normalizing, and enriching data from diverse sources, ensuring that only relevant and purposeful data reaches detection and hunting platforms. Data Orchestration is the next big evolution in cybersecurity, that gives Security teams both control and flexibility simultaneously, with agility and cost-efficiency.

Ready to unlock full potential of your data?
Share

See related articles

Financial data flows are some of the most complex in any industry. Trades, transactions, positions, valuations, and reference data all pass through ETL jobs, market feeds, and risk engines before surfacing in reports. Multiply that across desks, asset classes, and jurisdictions, and tracing a single figure back to its origin becomes nearly impossible. This is why data lineage has become essential in financial services, giving institutions the ability to show how data moved and transformed across systems. So, when regulators, auditors, or even your own board ask: “Where did this number come from?” too many teams still don’t have a clear answer.

The stakes couldn’t be higher. Across frameworks like BCBS-239, the Financial Data Transparency Act, and emerging supervisory guidelines in Europe, APAC, and the Middle East, regulators are raising the bar. Banks that have adopted modern data lineage tools report 57% faster audit prep and ~40% gains in engineering productivity, yet progress remains slow — surveys show that fewer than 10% of global banks are fully compliant with BCBS-239 principles. The result is delayed audits, costly manual investigations, and growing skepticism from regulators and stakeholders alike.

The takeaway is simple: data lineage is no longer optional. It has become the foundation for compliance, risk model validation, and trust. For financial services, what data lineage means is simple: without it, compliance is reactive and fragile; with it, auditability and transparency become operational strengths.

In the rest of this blog, we’ll explore why lineage is so hard to achieve in financial services, what “good” looks like, and how modern approaches are closing the gap.

Why data lineage is so hard to achieve in Financial Services

If lineage were just “draw arrows between systems,” we’d be done. In the real world it fails because of technical edge cases and organizational friction, the stuff that makes tracing a number feel like detective work.

Siloed ownership and messy handoffs
Trade, market, reference and risk systems are often owned by separate teams with different priorities. A single calculation can touch five teams and ten systems; tracing it requires stepping across those boundaries and reconciling different glossaries and operational practices. This isn’t just technical overhead but an ownership problem that breaks automated lineage capture.  

Opaque, undocumented transforms in the middle
Lineage commonly breaks inside ETL jobs, bespoke SQL, or one-off spreadsheets. Those transformation steps encode business logic that rarely gets cataloged, and regulators want to know what logic ran, who changed it, and when. That gap is one of the recurring blockers to proving traceability.  

Temporal and model lineage
Financial reporting and model validation require not just “where did this value come from?” but “what did it look like at time T?” Capturing temporal snapshots and ensuring you can reconstruct the exact input set for a historical run (with schema versions, parameter sets, and market snapshots) adds another layer of complexity most lineage tools don’t handle out of the box.  

Scaling lineage without runaway costs
Lineage at scale is expensive. Streaming trades, tick data and high-cardinality reference tables generate huge volumes of metadata if you try to capture full, row-level lineage. Teams need to balance fidelity, cost, and query ability, and that trade-off is a frequent operational headache.  

Organizational friction and change management
Technical fixes only work when governance, process and incentives change too. Lineage rollout touches risk, finance, engineering and compliance, aligning those stakeholders, enforcing cataloging discipline, and maintaining lineage over time is a people problem as much as a technology one.

The real challenge isn’t drawing arrows between systems but designing lineage that regulators can trust, engineers can maintain, and auditors can use in real time. That’s the standard the industry is now being measured against.

What good Data Lineage looks like in finance

Great lineage in financial services doesn’t look like a prettier diagram; it feels like control. The moment an auditor asks, “Where did this number come from?” the answer should take minutes, not weeks. That’s the benchmark.

It’s continuous, not reactive.
Lineage isn’t something you piece together after an audit request. It’s captured in real time as data flows — across trades, models, and reports — so the evidence is always ready.

It’s explainable to both engineers and auditors.
Engineers should see schema versions, transformations, and dependencies. Auditors should see clear traceability and business definitions. Good lineage bridges both worlds without translation exercises.

It scales with the business.
From millions of daily trades to real-time model recalculations, lineage must capture detail without exploding into unusable metadata. That means selective fidelity, efficient storage, and fast query ability built in.

It integrates governance, not adds it later.
Lineage should carry sensitivity tags, policy markers, and glossary links as data moves. Compliance is strongest when it’s embedded upstream, not enforced after the fact.

The point is simple: an effective data lineage makes defensibility the default. It doesn’t slow down data flows or burden teams with extra work. Instead, it builds confidence that every calculation, every report, and every disclosure can be traced and trusted.

Databahn in practice:  Data Lineage as part of the flow

Databahn captures lineage as data moves, not after it lands. Rather than relying on manual cataloging, the platform instruments ingestion, parsing, transformation and routing layers so every change — schema update, join, enrichment or filter — is recorded as part of normal pipeline execution. That means auditors, risk teams and engineers can reconstruct a metric, replay a run, or trace a root cause without digging through ad-hoc scripts or spreadsheets.

In production, that capture is combined with selective fidelity controls, snapshotting for time-travel, and business-friendly lineage views so traceability is both precise for engineers and usable for non-technical stakeholders.

Here are a few of the key features in Databahn’s arsenal and how they enable practical lineage:

  • Seamless lineage with Highway
    Every routing and transformation is tracked natively, giving a complete view from source to report without blind spots.
  • Real-time visibility and health monitoring
    Continuous observability across pipelines detects lineage breaks, schema drift, or anomalies as they happen — not months later.
  • Governance with history recall and replay
    Metadata tagging and audit trails preserve data history so any past report or model run can be reconstructed exactly as it appeared.
  • In-flight sensitive data handling
    PII and regulated fields can be masked, quarantined, or tagged in motion, with those transformations recorded as part of the audit trail.
  • Schema drift detection and normalization
    Automatic detection and normalization keep lineage consistent when upstream systems change, preventing gaps that undermine compliance.

The result is lineage that financial institutions can rely on, not just to pass regulatory checks, but to build lasting trust in their reporting and risk models. With Databahn, data lineage becomes a built-in capability, giving institutions confidence that every number can be traced, defended, and trusted.

The future of Data Lineage in finance

Lineage is moving from a compliance checkbox to a living capability. Regulators worldwide are raising expectations, from the Financial Data Transparency Act (FDTA) in the U.S., to ECB/EBA supervisory guidance in Europe, to data risk frameworks in APAC and the Middle East. Across markets, the signal is the same: traceability can’t be partial or reactive, it has to be continuous.

AI is at the center of this shift. Where teams once relied on static diagrams or manual cataloging, AI now powers:

  • Automated lineage capture – extracting flows directly from SQL, ETL code, and pipeline metadata.
  • Drift and anomaly detection – spotting schema changes or unusual transformations before they become audit findings.
  • Metadata enrichment – linking technical fields to business definitions, tagging sensitive data, and surfacing lineage in auditor-friendly terms.
  • Proactive remediation – recommending fixes, rerouting flows, or even self-healing pipelines when lineage breaks.

This is also where modern platforms like Databahn are heading. Rather than stop at automation, Databahn applies agentic AI that learns from pipelines, builds context, and acts, whether that’s updating lineage after a schema drift, tagging newly discovered sensitive fields, or ensuring audit trails stay complete.

Looking forward, financial institutions will also see exploration of immutable lineage records (using distributed ledger technologies) and standardized taxonomies to reduce cross-border compliance friction. But the trajectory is already clear: lineage is becoming real-time, AI-assisted, and regulator-ready by default, and platforms with agentic AI at their core are leading that evolution.

Conclusion: Lineage as the Foundation of Trust

Financial institutions can’t afford to treat lineage as a back-office detail. It’s become the foundation of compliance, the enabler of model validation, and the basis of trust in every reported number.

As regulators raise the bar and AI reshapes data management, the institutions that thrive will be the ones that make traceability a built-in capability, not an afterthought. That’s why modern platforms like DataBahn are designed with lineage at the core. By capturing data in motion, applying governance upstream, and leveraging agentic AI to keep pipelines audit-ready, they make defensibility the default.

If your institution is asking tougher questions about “where did this number come from?”, now is the time to strengthen your lineage strategy. Explore how Databahn can help make compliance, trust, and auditability a natural outcome of your data pipelines. Get in touch for a demo!

Every October, Cybersecurity Awareness Month rolls around with the same checklist: patch your systems, rotate your passwords, remind employees not to click sketchy links. Important, yes – but let’s be real: those are table stakes. The real risks security teams wrestle with every day aren’t in a training poster. They’re buried in sprawling data pipelines, brittle integrations, and the blind spots attackers know how to exploit.

The uncomfortable reality is this: all the awareness in the world won’t save you if your cybersecurity data pipelines are broken.

Cybersecurity doesn’t fail because attackers are too brilliant. It fails because organizations can’t move their data safely, can’t access it when needed, and can’t escape vendor lock-in while dealing with data overload. For too long, we’ve built an industry obsessed with collecting more data instead of ensuring that data can flow freely and securely through pipelines we actually control.

It’s time to embrace what many CISOs, SOC leaders, and engineers quietly admit: your security posture is only as strong as your ability to move and control your data.

The Hidden Weakness: Cybersecurity Data Pipelines

Every security team depends on pipelines, the unseen channels that collect, normalize, and route security data across tools and teams. Logs, telemetry, events, and alerts move through complex pipelines connecting endpoints, networks, SIEMs, and analytics platforms.

And yet, pipelines are treated like plumbing. Invisible until they burst. Without resilient pipelines, visibility collapses, detections fail, and incident response slows to a crawl.

Security teams drowning in data yet starved for the right insights because their pipelines were never designed for flexibility or scale. Awareness campaigns should shine a light on this blind spot. Teams must not only know how phishing works but also how their cybersecurity data pipelines work — where they’re brittle, where data is locked up, and how quickly things can unravel when data can’t move.

Data Without Movement Is Useless

Here’s a hard truth: security data at rest is as dangerous as uncollected evidence.

Storing terabytes of logs in a single system doesn’t make you safer. What matters is whether you can move security data safely when incidents strike.

  • Can your SOC pivot logs into a different analytics platform when a breach unfolds?
  • Can compliance teams access historical data without waiting weeks for exports?
  • Can threat hunters correlate data across environments without being blocked by proprietary formats?

When data can’t move, it becomes a liability. Organizations have failed audits because they couldn’t produce accessible records. Breaches have escalated because critical logs were locked in a vendor’s silo. SOCs have burned out on alert fatigue because pipelines dumped raw, unfiltered data into their SIEM.

Movement is power. Databahn products are designed around the principle that data only has value if it’s accessible, portable, and secure in motion.

Moving Data Safely: The Real Security Priority

Everyone talks about securing endpoints, networks, and identities. But what about the routes your data travels on its way to analysts and detection systems?

The ability to move security data safely isn’t optional. It’s foundational. And “safe” doesn’t just mean encryption at rest. It means:

  • Encryption in motion to protect against interception
  • Role-based access control so only the right people and tools can touch sensitive data
  • Audit trails that prove how and where data flowed
  • Zero-trust principles applied to the pipeline itself

Think of it this way: you wouldn’t spend millions on vaults for your bank and then leave your armored trucks unguarded. Yet many organizations do exactly that, lock down storage, while neglecting the pipelines.

This is why Databahn emphasizes pipeline resilience. With solutions like Cruz, we’ve seen organizations regain control by treating data movement as a first-class security priority, not an afterthought.

A New Narrative: Control Your Data, Control Your Security

At the heart of modern cybersecurity is a simple truth: you control your narrative when you control your data.

Control means more than storage. It means knowing where your data lives, how it flows, and whether you can pivot it when threats emerge. It means refusing to accept vendor black boxes that limit visibility. It means architecting pipelines that give you freedom, not dependency.

This philosophy drives our work at Databahn.  With Reef helping teams shape, access, and govern security data, and Cruz enabling flexible, resilient pipelines. Together, these approaches echo a broader industry need: break free from lock-in, reclaim control, and treat your pipeline as a strategic asset.

Security teams that control their pipelines control their destiny. Those that don’t remain one vendor outage or one pipeline failure away from disaster.

The Path Forward: Building Resilient Cybersecurity Data Pipelines

So how do we shift from fragile to resilient? It starts with mindset. Security leaders must see data pipelines not as IT plumbing but as strategic assets. That shift opens the door to several priorities:

  • Embrace open architectures – Avoid tying your fate to a single vendor. Design pipelines that can route data into multiple destinations.
  • Prioritize safe, audited movement – Treat data in motion with the same rigor you treat stored data. Every hop should be visible, secured, and controlled.
  • Test pipeline resilience – Run drills that simulate outages, tool changes, and rerouting. If your pipeline can’t adapt in hours, you’re vulnerable.
  • Balance cost with control – Sometimes the cheapest storage or analytics option comes with the highest long-term lock-in risk. Awareness must extend to financial and operational trade-offs.

We’ve seen organizations unlock resilience when they stop thinking of pipelines as background infrastructure and start thinking of them as the foundation of cybersecurity itself. This shift isn’t just about tools, it’s about mindset, architecture, and freedom.

The Real Awareness Shift We Need

As Cybersecurity Awareness Month 2025 unfolds, we’ll see the usual campaigns: don’t click suspicious links, don’t ignore updates, don’t recycle passwords. All valuable advice. But we must demand more from ourselves and from our industry.

The real awareness shift we need is this: don’t lose control of your data pipelines.

Because at the end of the day, security isn’t about awareness alone. It’s about the freedom to move, shape, and use your data whenever and wherever you need it.

Until organizations embrace that truth, attackers will always be one step ahead. But when we secure our pipelines, when we refuse lock-in, and when we prioritize safe movement of data, we turn awareness into resilience.

And that is the future cybersecurity needs.

Ask any security practitioner what keeps them up at night, and it rarely comes down to a specific tool. It's usually the data itself – is it complete, trustworthy, and reaching the right place at the right time?

Pipelines are the arteries of modern security operations. They carry logs, metrics, traces, and events from every layer of the enterprise. Yet in too many organizations, those arteries are clogged, fragmented, or worse, controlled by someone else.

That was the central theme of our webinar, From Chaos to Clarity, where Allie Mellen, Principal Analyst at Forrester, and Mark Ruiz, Sr. Director of Cyber Risk and Defense at BD, joined our CPO Aditya Sundararam and our CISO Preston Wood.

Together, their perspectives cut through the noise: analysts see a market increasingly pulling practitioners into vendor-controlled ecosystems, while practitioners on the ground are fighting to regain independence and resilience.

The Analyst's Lens: Why Neutral, Open Pipelines Matter

Allie Mellen spends her days tracking how enterprises buy, deploy, and run security technologies. Her warning to practitioners is direct: control of the pipeline is slipping away.

The last five years have seen unprecedented consolidation of security tooling. SIEM vendors offer their own ingestion pipelines. Cloud hyperscalers push their monitoring and telemetry services as defaults. Endpoint and network vendors bolt on log shippers designed to funnel telemetry back into their ecosystems.

It all looks convenient at first. Why not let your SIEM vendor handle ingestion, parsing, and routing? Why not let your EDR vendor auto-forward logs into its own analytics console?

Allie's answer: because convenience is control and you're not the one holding it.

" Practitioners are looking for a tool much like with their SIEM tool where they want something that is independent or that’s kind of how they prioritize this "

— Allie Mellen, Principal Analyst, Forrester

This erosion of control has real consequences:

  • Vendor lock-in: Once you're locked into a vendor's pipeline, swapping tools downstream becomes nearly impossible. Want to try a new analytics platform? Your data is tied up in proprietary formats and routing rules.
  • Blind spots: Vendor-native pipelines often favor data that benefits the vendor's use cases, not the practitioners’. This creates gaps that adversaries can exploit.
  • AI limitations: Every vendor now advertises "AI-driven security." But as Allie points out, AI is only as good as the data it ingests. If your pipeline is biased toward one vendor's ecosystem, you'll get AI outcomes that reflect their blind spots, not your real risk.

For Allie, the lesson is simple: net-neutral pipelines are the only way forward. Practitioners must own routing, filtering, enrichment, and forwarding decisions. They must have the ability to send data anywhere, not just where one vendor prefers.

That independence is what preserves agility, the ability to test new tools, feed new AI models, and respond to business shifts without ripping out infrastructure.

The Practitioner's Challenge: BD's Story of Data Chaos

Theory is one thing, but what happens when practitioners actually lose control of their pipelines? For Becton Dickinson (BD), a global leader in medical technology, the consequences were very real.

BD's environment spanned hospitals, labs, cloud workloads, and thousands of endpoints. Each vendor wanted to handle telemetry in its own way. SIEM agents captured one slice, endpoint tools shipped another, and cloud-native services collected the rest.

The result was unsustainable:

  • Duplication: Multiple vendors forwarding the same data streams, inflating both storage and licensing costs.
  • Blind spots: Medical device telemetry and custom application logs didn't fit neatly into vendor-native pipelines, leaving dangerous gaps.
  • Operational friction: Pipeline management was spread across several vendor consoles, each with its own quirks and limitations.

For BD's security team, this wasn't just frustrating, it was a barrier to resilience. Analysts wasted hours chasing duplicates while important alerts slipped through unseen. Costs skyrocketed, and experimentation with new analytics tools or AI models became impossible.

Mark Ruiz, Sr. Director of Cyber Risk and Defense at BD, knew something had to change.

With Databahn, BD rebuilt its pipeline on neutral ground:

  • Universal ingestion: Any source from medical device logs to SaaS APIs could be onboarded.
  • Scalable filtering and enrichment: Data was cleaned and streamlined before hitting downstream systems, reducing noise and cost.
  • Flexible routing: The same telemetry could be sent simultaneously to Splunk, a data lake, and an AI model without duplication.
  • Practitioner ownership: BD controlled the pipeline itself, free from vendor-imposed limits.

The benefits were immediate. SIEM ingestion costs dropped sharply, blind spots were closed, and the team finally had room to innovate without re-architecting infrastructure every time.

" We were able within about eight, maybe ten weeks consolidate all of those instances into one Sentinel instance in this case, and it allowed us to just unify kind of our visibility across our organization."

— Mark Ruiz, Sr. Director, Cyber Risk and Defense, BD

Where Analysts and Practitioners Agree

What's striking about Allie's analyst perspective and Mark's practitioner experience is how closely they align.

Both argue that convenience isn't resilience. Vendor-native pipelines may be easy up front, but they lock teams into rigid, high-cost, and blind-spot-heavy futures.

Both stress that pipeline independence is fundamental. Whether you're defending against advanced threats, piloting AI-driven detection, or consolidating tools, success depends on owning your telemetry flow.

And both highlight that resilience doesn't live in downstream tools. A world-class SIEM or an advanced AI model can only be as good as the data pipeline feeding it.

This alignment between market analysis and hands-on reality underscores a critical shift: pipelines aren't plumbing anymore. They're infrastructure.

The Databahn Perspective

For Databahn, this principle of independence isn't an afterthought—it's the foundation of the approach.

Preston Wood, CSO at Databahn, frames it this way:

"We don't see pipelines as just tools. We see them as infrastructure. The same way your network fabric is neutral, your data pipeline should be neutral. That's what gives practitioners control of their narrative."

— Preston Wood, CSO, Databahn

This neutrality is what allows pipelines to stay future-proof. As AI becomes embedded in security operations, pipelines must be capable of enriching, labeling, and distributing telemetry in ways that maximize model performance. That means staying independent of vendor constraints.

Aditya Sundararam, CPO at Databahn, emphasizes this future orientation: building pipelines today that are AI-ready by design, so practitioners can plug in new models, test new approaches, and adapt without disruption.

Own the Pipeline, Own the Outcome

For security practitioners, the lesson couldn't be clearer: the pipeline is no longer just background infrastructure. It's the control point for your entire security program.

Analysts like Allie warn that vendor lock-in erodes practitioner control. Practitioners like Mark show how independence restores visibility, reduces costs, and builds resilience. And Databahn's vision underscores that independence isn't just tactical, it's strategic.

So the question for every practitioner is this: who controls your pipeline today?

If the answer is your vendor, you've already lost ground. If the answer is you, then you have the agility to adapt, the visibility to defend, and the resilience to thrive.

In security, tools will come and go. But the pipeline is forever. Own it, or be owned by it.

Hi 👋 Let’s schedule your demo

Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.

Trusted by leading brands and partners

optiv
mobia
la esfera
inspira
evanssion
KPMG
Guidepoint Security
EY
ESI